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We consider bidimensional scalar models including kink solutions ,;bk(x ). Using 
the hidden supersymmetric properties of the Dirac equation, we describe a 
general method to find normalizable fermionic zero modes. In particular, we 
apply the technique to a (Aq~6)l+l model. Going to the one-loop order of the 
effective potential, the emergence of a radiative kink provides an interesting 
scalar background in order to discuss the Dirac equation. 

1. I N T R O D U C T I O N  

Work ing  on a t o p o l o g i c a l  b a c k g r o u n d  p r o v i d e d  by  the class ical  sol- 
u t ions  o f  several  theor ies  ( ranging  f rom kinks  or  sol i tons  in systems with 
one spa t ia l  d imens ion  to m o n o p o l e s  in the  t h r ee -d imens iona l  ones) ,  the 
fe rmion ic  n u m b e r  a s soc ia t ed  with the v a c u u m  need not  be an in teger  and  
can even resul t  in a t r anscenden t a l  func t ion  o f  the  pa rame te r s  o f  the mode l  
( G o l d s t o n e  and  Wilczek,  1981). The so-ca l led  f rac t ion iza t ion  p h e n o m e n o n  
can be ana lyzed  acco rd ing  to different  schemes.  F r o m  a ma thema t i ca l  po in t  

o f  view it appea r s  re la ted  to the  r/ invar ian t  o f  the Di rac  H a m i l t o n i a n  
( P a r a n j a p e  and  Semenoff ,  1983). Such objects ,  i n t roduced  in the analys is  
o f  the Index  Theo rem for n o n c o m p a c t  mani fo lds ,  p rov ide  a regu la r ized  
express ion  o f  the spec t ra l  asymmetry .  In par t i cu la r ,  we can find an interest-  
ing s i tua t ion  when the in te rac t ion  te rm exhibi ts  the charge  con juga t ion  
symmet ry  C, thus  mak ing  even the states with energy +IEI with those  others  
o f - ] E l .  In  these c i rcumstances  the phys ica l  interest  o f  the  p rob lem,  which  
n o r m a l l y  sp reads  over  all the spec t rum,  will on ly  be concen t r a t ed  on the 
ze ro -energy  eigenstates .  As a mat te r  o f  fact, i f  these  states are normal i zab le ,  
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each one of them adds minus one-half to the vacuum fermion number. To 
detect the zero-energy solutions of a model, the general tool to be used is 
the Index Theorem in open manifolds as first stated by Callias (1978) and 
Bott and Seeley (1978). In particular, the topological character of the 
phenomenon is easily understood by observing that the index depends on 
the behavior of the scalar background field at infinity. Moreover, an alter- 
native study of the problem is feasible if we bear in mind the properties 
of the Dirac equation over a background (Ok(X). One starts from a pair of 
first-order equations which are easily decoupled, yielding a couple of 
Schr6dinger-like equations. In fact, we find the conventional SUSY quantum 
mechanics situation where the fermion-boson interaction term G(Cbk) rep- 
resents the superpotential W(x) (Cooper et al., 1988). In order to discuss 
the fermionic zero modes, we can exploit these hidden supersymmetric 
properties of the Dirac equation. First we recall the bosonic stability 
equation, where an unavoidable zero-energy mode emerges due to transla- 
tional invariance. Bearing in mind the Schr/Sdinger equations for the fer- 
mions, a clever choice for the coupling between scalar and Dirac fields 
percolates the bosonic stability equation to the fermionic part. In these 
conditions the emergence of a fermionic zero mode is guaranteed. 

The existence of topological kinks or solitons requires an adequate 
vacuum degeneracy pattern. At tree order these objects appear as finite- 
energy solutions of the classical equations of  motion. In several models the 
necessary symmetry breaking does not occur at the classical level. The 
phenomenon can come into play due to the quantum contributions, a 
dynamical symmetry breaking thus arising. Once the quantum corrections 
are taken into account, the unexpected vacuum degeneracy opens the 
possibility of topological kinks although the conventional tree-order ones 
were absent. 

In order to discuss the behavior of a fermionic field over a specific 
bosonic background, we choose the theory of a scalar field in (1+1)  
dimensions with self-interactions up to q56. The classical potential of the 
model exhibits three absolute minima (Lohe, 1979). Besides its applications 
in particle physics, the 6 6 self-interacting theory plays an important role 
in solid-state physics. In particular, it can be used to study the first-order 
phase transition from the ferroelectric to the paraelectric state and the 
structural phase transitions of crystals (Behera and Khare, 1980; Kittel, 
1977). First we consider the tree-order kinks interpolating between adjacent 
vacua. Taking the Yukawa coupling, a nonnormalizable fermionic zero 
mode is found. A normalizable state is at hand if we apply the general 
technique that percolates the translational besonic zero mode to the fer- 
mionic part. Going to the one-loop order of the effective potential, we reach 
a physical picture very similar to the one outlined in models with dynamical 
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symmetry breaking. In fact, the classical minimum located at (~b)= 0 dis- 
appears, so that only the nonzero minima survive. Therefore the vacuum 
of  the model is twofold degenerate and the existence of a radiative topologi- 
cal kink with nonzero boundary values at infinity is feasible. Even maintain- 
ing the Yukawa coupling, this kink permits the existence of a normalizable 
fermionic zero mode. 

The paper is arranged as follows. In Section 2 we discuss the general 
situation of the fermions over the tree-order kinks, while Section 3 deals 
with these problems in a (1~.(~6)1+1 model: Section 4 includes the one-loop 
order of the effective potential and the radiative kink emergence. Finally, 
we present our conclusions. 

2. F E R M I O N S  O V E R  T R E E - O R D E R  K I N K S  

In this section we shall be concerned with a general model governed 
by the following Lagrangian density: 

L = �89 2 -  V(qS) + iCIry~O~ - G(4))CIrg r (2.1) 

where ~b corresponds to a real scalar field and �9 represents a Dirac one. 
As usual, V(~b) is the well-behaved potential function. Since we are inter- 
ested in models exhibiting kinks, the V(~b) potential should have at least 
two minima. In fact, the topological backgrounds will interpolate between 
two adjacent minima. In the sequel we consider the supersymmetric formula- 
tion for the V(05) function, namely 

V(4,) = �89 2 (2.2) 

which can always be achieved because V(~b) is essentially positive. With 
adequate normalization the minima of V will correspond to zeros of U, 
while the equations of motion are 

0%5 a2~b 
at 2 ~  2 U(qS) U'(4~) (2.3) 

In particular, the energy functional can be written as 

E [ d ) ] : f [ ~ ( O 4 ) ~ 2 + l ( O 4 ) ~ 2 + l u ( 4 ) ) 2 ] d x = f  2\Ox, 2 (2.4) 

which can always be achieved because V(O) is essentially positive. With 

1 [ d 0 5  U(,;b) + U ( O )  (2.5) e(x) =~ Lax 

The Bogomolny inequality is simply 

E,[4q>_]f~u(e~)dx (2.6) 
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with a saturated bound when we consider the kink solutions 

d4, 
= :t: U(~b) (2.7) 

dx 

so that we must solve a first-order equation. The constant solutions of  
(2.7) identify the tree-order vacua of the theory 

d4~oi 
- 0 and U(qSoi) = 0, i = 1, 2 , . . . ,  N (2.8) 

dx 

with a zero classical energy. The most general solution of (2.7) wil l include 
just an integration constant, namely 

f d4~ (2.9) X - Xo = :~ U ( e) ) 

In the sequel we consider kinks centered at Xo = 0. As a matter of  fact, 
when U(~b) has a unique absolute minimum there can be no kinks, while 
if  U(~b) exhibits n discrete degenerate minima we find 2 ( n - 1 )  types of  
tree-order kinks. Moreover,  each one of them will interpolate between any 
two neighboring minima as x varies from -oo to + ~ .  In principle, a first 
approach to the global quantum theory over the inhomogeneous classical 
solutions is obtained by taking the small perturbations over them. I f  ~bk(x) 
represents the background,  once we expand the quantum field ~b(x, t) in 
the form 

r with ~ ( x , t ) = ~ j ( x ) e x p ( i w f l )  (2.10) 
J 

we can obtain the stability equation 

d2q~J t- V"(qSk)r = w)q~j (2.11) 
d x  2 

where 

v"(~k) = u'(~k)2+ u(4,~) u " ( ~ )  (2.12) 

In particular, the mandatory  oJj = 0  solution can be easily under- 
stood: it represents the bosonic zero mode due to translational invariance 
(Rajaraman,  1982). Returning to the fermionic part, once we choose as 
representation for the two-dimensional y matrices To = o-2 and 'Yl = io-3, the 
fluctuations built over the kink are given by 

[iy 'O,  - G(~bk)]q t = 0 (2.13) 

If  we write the spinor in its two-component  form 

V(x, t ) = / u ( x ) [  exp(itoFt) (2.14) 
Lv(x)J 
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then equation (2.13) transforms into 

i dx G(4~k) v(x)=-o~u(x)  (2.15a) 

i ~ -  ~(4)~) u(x) = -~o~v(x) (2.15b) 

In order to detect the zero-energy solutions of (2.13), the mathematical 
tool to be applied is the Index Theorem in open spaces, as first stated by 
Callias, Bott, and Seeley. Taking the z-regularization technique, the index 
would read (Callias, 1978; Bott and Seeley, 1978) 

G+ G_ 
= 1 [(GZ++z)I/2 (G2 ~-z)1/2] (2.16) A(z) 

on the understanding that G• represent the values of G(~bk) as x goes to 
infinity. Following the conventional analysis, the number of zero-energy 
states is obtained through the z ~ 0 limit 

A(z ~ 0) = �89 sign(G+) -�89 sign(G_) (2.17) 

so that whenever G + > 0 >  G_, A ( z ~ 0 ) =  1, and therefore we just find a 
normalizable zero mode. In these conditions we can state the requirement 
for a fermionic zero-energy mode: it needs an interaction term that, once 
considered, the kink 4~k(x) takes at infinity values fulfilling G+ > 0 > G  . 

However, an alternative analysis of the problem is possible if we bear 
in mind the hidden SUSY quantum mechanics character of the Dirac 
equation over the background G(4~k). As a matter of fact, we can de- 
couple (2.15), 

I d2 
- dx----~+ G(q~k)2-t 

[-- d~2 + G(q~k) 2 

dG(4~k)] u(x) = wZFu(x) (2.18a) 
j 

dO(4,k)] 
dx ] v(x) = oJ~v(x) (2.18b) 

thus obtaining the pair of Schr6dinger equations associated with a SUSY 
quantum mechanics exercise [the G(~bk) function represents the superpoten- 
tial W(x)]. We can recall the conventional formulation of these models 
(Witten, 1982) 

with 

Q=[Jx+W] 
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In fact, the supersymmetric properties of the theory can be concentrated 
into the transformation 

s[:] 
Using (2.19), the Hamiltonian operator is simply 

which in a more transparent version reads 

- ~ x  2+ W2 +dW] u = Eu (2.23a) 
~ x j  

[ w2_ew] 
- -~x  ~+ clx A v = Ev (2.23b) 

The SUSY quantum mechanics represents an adequate frame within 
which to discuss the supersymmetry spontaneous breaking patterns. As 
SUSY remains unbroken only if the energy of the ground state is zero, the 
physical interest of the problem concentrates on the zero modes. The 
situation can be analyzed using the so-called Witten index, an order para- 
meter which in several cases provides valuable information about the 
symmetry-breaking phenomenon. Maintaining the /3-regularization of 
Witten (1982), the mentioned object adopts the form 

A(/3) = Tr[exp(-/3H+) - exp(- /3H_)]  (2.24) 

It represents a measurement of the difference of u(x) and v(x) eigen- 
states with zero energy (let us point out that for positive energies duplication 
occurs between both parts). In principle, the index cannot depend on the 
regularization parameter/3. However, the explicit computations sometimes 
end up in a Witten index with a/3 dependence (even taking the limit/3 ~ oo, 
cumbersome final results such as 1/2 are obtained). To sum up, we can 
point to the form taken by A(/3) in terms of the diagonal parts of the heat 
kernels associated with H+ and H_ (Akhoury and Comtet, 1984) 

A(/3) = f [K+(x, x,/3) - K_(x, x,/3)] dx (2.25) 

while the equations satisfied by the heat kernels are 

o a ~ w 2 : ~ c t w ]  ~- K• = 0 (2.26) 
a/3 ax ~ dx A 
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I f  we make a good use of  the following result, which appears in Niemi 
and Semenoff (1986), 

d [K+(x,x, fl)-K_(x,x, fl)]=-~-~x + 2 W  K+(x,x,/3) (2.27) 
a/3 

we can reach the final result 

da(/3)  1 
d/3 - (4rr/3) 1/i [ W§ exp ( - / 3W 2) - W_ exp(-/3W2_)] (2.28) 

Since W§ > 0 and W_ < 0, we perform the integration with A(0)= 0 

A(/3) = �89 + �89 (2.29) 

where qb represents the probabili ty Fresnel function. Taking the limit/3 ~ oe 
(we recall the z + 0 limit for the conventional Index Theorem),  the Witten 
index amounts to 1. Cumbersome situations can arise if either W+ or W_ 
is zero. For example, with W_ = 0 we get 

A(/3) = �89 (2.30) 

so that the limit 13 ~ ~ leads to A = 1/2, an identical value to the one obtained 
within the Liouville SUSY quantum mechanics (Niemi and Wijewardhana, 
1984). In the bosonic sector of  this model the energy going to the zero limit 
of  the continuum normalized wave function yields a non-square-integrable 
state that tends to zero as x ~ ~ ,  while it reaches a nonzero value if x ~ - ~ .  
In these conditions the emergence of a normalizable fermionic zero mode 
requires nonzero superpotential  at infinity. 

We can otherwise exploit the hidden supersymmetric properties of  the 
Dirac equation over the scalar background provided by r It suffices 
to consider the bosonic stability equation (2.11) with its zero-energy eigen- 
state due to translational invariance. Making a clever choice for the G(O)  
function, we can percolate the scalar stability equation (zero mode included) 
to the fermionic part. In particular, G(cb)=gU'(4~) (g represents a 
dimensionless constant) is the right bosonic-fermionic  coupling. According 
now to the specific sign of the Bogomolny condition (2.7) and with the new 
spatial coordinate y = gx, the bosonic equation (2.11) coincides either with 
(2.18a) or with (2.18b). Therefore the zero-energy eigenmode is a common 
characteristic for both bosonic and fermionic sectors. Furthermore, the 
fermionic zero mode can be determined using first-order differential 
equations [see equations (2.20) and (2.21)]. The former arguments permit 
us, for example,  to recover the conventional Yukawa boson-fermion coup- 
ling in field theories with ~)4 self-interaction (Jackiw and Rebbi, 1976). In 
the sequel we shall go to a bidimensionai scalar field with self-interactions 
up to (/~6. 
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3. THE (a~b6)l+l M O D E L  

The model we shall be concerned with corresponds to a real self- 
interacting scalar field in (1 + 1) dimensions governed by the Lagrangian 
density (Lohe, 1979) 

1 2 1 2 2 2 / ' n  /~=~(0.4,) -~a 4, 4, -~-  (3.1) 

where m and A are positive constants with mass dimensionality. The classical 
potential has three absolute minima: one at (4 , )=0  and the others at 
((a) = +(re~A) 1/2 (Figure 1). At this tree level we can point out the existence 
of a kink as (Lohe, 1979) 

4,k(X)=[~-A(l+tanhmx)] 1/2 (3.2) 

a field configuration which makes a smooth interpolation between the vacua 
4) = O, 4, = (re~A) 1/2 (Figure 2). More solutions are also possible by putting 
x ~ - x  and 4,k ~ --4,k. In particular, we will employ the antikink 

[ m mx)] 1/2 (3.3) 4,,k(X) = ~ -  (1 - t a n h  

now with an interpolation between 4, = (rn/A)1/2 and 4, = 0. As the tree-order 
kinks only connect two neighboring minima as x varies from -o0 to oe, we 
cannot find a classical solution interpolating between the vacua + (m/A )i/2. 
With this set of  minima the system admits four (anti) kinks. 

In principle we consider the (A4,6)1+1 theory including a Yukawa 
coupling to Dirac fermions, a model then governed by the Lagrangian 

f 

Fig. 1. The classical potential of  the (~6 model. 
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vra-7  

J 
X 

Fig. 2. The "tree-order" kink interpolating smoothly between the vacua 6 = O, d) = ( m / A ) t / 2 .  

density 

L = �89 ( O ~ qb ) 2 - �89 A 2 q~ 2 ( (b 2 - ~ ) 2 + i ~Ixr "g '~ O,~ xtz - f q~ ~Irtl2 " (3.4) 

( f  is the fermionic coupling constant with mass dimensionality). Working 
over the background provided by the kink of (3.2), equations (2.18) trans- 
form into 

d 2  2 2 ddpk 
[-~Sx2+f ~bk+f--~-x ] u ( x ) = w Z u ( x )  (3.5a) 

d2 ~ 2 dff)k 
[ - ~ x Z + f  ~bk-- f - -~X]V(X)=W2FV(X)  (3.5b) 

while the hypothetical zero modes can be determined through the first-order 
differential equations 

As regards the SUSY quantum mechanics pattern, we have a super- 
potential as 

I f2  m ] 1/2 
W ( x )  = L-~-- (1 +tanh rex) (3.7) 
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Since W_ is zero, we finally obtain a Witten index equal to 1/2. This 
embarrassing result can be understood by returning to (3.6). As a matter 
of fact, the hypothetical zero mode behaves as 

v(x) --> 0 as x --> oc (3.8a) 

k ~ - - - i J  as x , - o o  (3.8b) 

while the u(x) solution diverges as x--> oo. Taking the antikink solution, it 
is u(x), which exhibits the behavior of (3.8). A normalizable fermionic zero 
mode is feasible by applying the general technique exposed in Section 2. 
We are now concerned with 

Taking again the kink solution of (3.2), we find a superpotential as 

W(x) =~-~ (3 tanh rex+ 1) (3.10) 

so that IV+ and IV_ will be different from zero. In these conditions the 
Witten index finally amounts to 1. The existence of a square-integrable 
fermionic state with zero energy can be easily found using (3.6). We find 

0 
~~ = v~ rex) -3f/2"~ exp(-fmx/2A)] (3.11) 

where vo is the normalization constant. The antikink solution leads to A = -1  
with a nonzero upper component for the zero mode. 

4. RADIATIVE KINKS AND FERMIONIC ZERO 
M O D E S  IN ()td~6)l+l 

The existence of topological kinks requires an adequate vacuum 
degeneracy pattern. Up till now we have analyzed the tree-order kinks that 
appear as finite-energy solutions of the classical equations of motion once 
the right boundary conditions are imposed. We can find several models 
where, although the spontaneous symmetry breaking does not appear at 
the classical level, it comes into play when considering the quantum correc- 
tions. In these conditions we face a dynamical spontaneous symmetry 
breaking (Coleman and Weinbers, 1973), so that the radiative vacuum 
degeneracy permits the existence of topological kinks even though the 
classical ones were absent. Returning to our (A056)1+~ model of (3.1), we 
dispose of a Lagrangian exhibiting the ~b->-~b internal discrete symmetry. 
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As the classical potential has three absolute minima, we find an embarrassing 
situation: the vacua around (4~) = +(rn/A) '/2 would represent the spon- 
taneous symmetry-breaking phenomenon, while if the system chooses the 
(~) = 0 minimum, the symmetry maintains its exact character. Fortunately, 
we can remove the problem only going to the one-loop order of the effective 
potential (Babu Joseph and Kuriakose, 1982). While the zero-loop or 
tree-order contribution to the effective potential is simply 

the one-loop correction is computed through the Gaussian approximation. 
In our case 

1 f d2k V,(~b)=~ ~ - ~ l n ( k 2 + M  2) (4.2) 

where 

M 2= m z -  12AmO2 + 15Ae~b 4 (4.3) 

Now we can pass over the ultraviolet divergent character of (4.2) using 
the conventional cutoff parameter. Afterward we impose the following 
normalization conditions (Babu Joseph and Kuriakose, 1982): 

V( q~ = ( m/  A ) 1/2) = 0 (4.4a) 

d 2 V(q~ = (m/A)'/2) _ 4m 2 (4.4b) 
&b 2 

a'v(O=(m/a) 1/2) 
- 156Am (4.4c) &b 4 

so that the renormalized one-loop effective potential reads 

V(~) 1,~2(j~2( 2 m'~2 M2 [4m2\ 
~ b - A )  +8-~-~ ln~-M -T) (4.5) 

In this way the minimum (~) = 0 disappears and the vacua around any 
one absolute minimum +(re~A) '/2 would correspond to spontaneous sym- 
metry breaking. Therefore, we find a model where the vacuum degeneracy 
drawn at one-loop order differs from the one outlined using the tree order. 
With a vacuum twofold degenerate, the existence of a radiative topological 
kink ~bkr(x) is possible (Figure 3). We only need the boundary conditions 

xlimo~ (~kr(X) = :t:(m/A ),/2 (4.6) 
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* 

Fig. 3. A kink configuration based on the "one-loop" order. 

This situation resembles the Gross-Neveu model with a radiative 
symmetry breaking for the condensate field cr (Dashen et al., 1975). The 
space-dependent field configurations o-(x) lead the phase transition at finite 
temperature. Returning to (;t~b6)~§ we must review the fermionic problem 
once the vacuum degeneracy has changed due to quantum corrections. 
Maintaining the Yukawa coupling of (3.4), we consider the radiative topo- 
logical kink fulfilling (4.6). In these conditions the boundary values of the 
superpotential W ( x )  are simply 

W_ = - f ( m / A )  1 /2 ,  W + = f ( m / h )  1/2 (4.7) 

so that the Witten index amounts to I and our topological arguments lead 
us to conclude the existence of a square-integrable fermionic zero mode 
over the background provided by the kink ~bkr(X). Furthermore, we can 
recover the conventional fractionization phenomenon (see Section 1). 

5. CONCLUSIONS 

We considered bidimensional scalar models with an adequate vacuum 
degeneracy pattern in order to find tree-order topological kinks ~bk(X). 
Adding fermions, the hidden supersymmetric properties of the Dirac 
equation yield a general method to find square-integrable fermionic zero 
modes. We applied the technique to a (A~b6)l+l theory with three absolute 
minima at tree order.  Going to the one-loop contribution to the effective 
potential, the vacuum degeneracy changes, a situation very similar to the 
one outlined in models with dynamical symmetry breaking. We take the 
radiative kink interpolating between the vacua +(m/h)  1/2. Finally, topologi- 
cal arguments lead us to conclude the existence of a square-integrable 
fermionic zero mode even maintaining the Yukawa boson-fermion inter- 
action. 
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